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Long-time behavior of the shear-stress autocorrelation function
in two-dimensional colloidal fluids
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Brownian dynamics simulations of two-dimensional Yukawa particles have been performed over a range of
fluid densities in order to study the long-time behavior of the stress autocorrelation function in simple models
for colloidal liquids. The system size and the trajectory length dependence of the shear stress autocorrelation
function have been investigated in detail for simulation trajectories of length in excess af1BQ0 The
results indicate that the decay of the shear-stress autocorrelation function has a fractional exponential form and
is not algebraic in time, certainly up to timesc?/D, at which time the correlation function has decayed
statistically to zero[S1063-651X%97)02605-9

PACS numbefs): 82.70.Dd, 61.20.Lc, 66.26d

[. INTRODUCTION long-time tails, is the divergence of two-dimensional trans-
port coefficients. Very recently, this problem has been rein-
Green-Kubo theory has been widely used to computerestigated independently by Hoover and Po$tB] and
transport coefficients in computer simulations. The integrandsravina, Ciccotti and Holiafil4]. Their extensive equilib-
in the Green-Kubo formula is a time correlation function, rium and nonequilibrium MD calculations of the shear prob-
whose long-time decay is generally held to be nonexponenem in two-dimensional2D) simple fluids have shown no
tial. This behavior was initially observed by molecular- evidence for a divergence of the shear viscosity with system
dynamics MD simulation studies of the velocity autocorrela-size and cast doubt on the generality of the divergence argu-
tion function of hard-sphere and disk fluidd]. These ment. The results strongly suggest that viscosity is a mean-
simulations revealed that the velocity autocorrelation funcingful material property in two dimensions. The authors
tion decays algebraically as%?, whered is the dimension-  point out the relative importance of fluctuations and surface
ality of the system. More extensive simulations of hard-coreeffects in two dimensions, which both contribute terms of
and other molecular fluids confirmed the existence of thisorderN ™2 to N-body intensive terms. This fact is not build
so-called long-time tail behavide]. into the expressions for the transport coefficients, which
This algebraic decay has also been predicted by kineticould be the reason of the long-standing view that 2D trans-
[3] and hydrodynamic mode-coupling thedMICT) [4]. The  port coefficients diverge.
velocity autocorrelation function determines self-diffusion  There is also evidence of a slow decay in the time corre-
(the simplest transport coefficigratind is a one-particle quan- lation functions of colloidal suspensions. Experiments car-
tity. Mode-coupling and kinetic theories lead one to expectied out on colloidal liquids confirmed the slow decay of the
that the decay of the shear-stress autocorrelation functiowelocity autocorrelation function in 3D colloidal suspen-
(which determines the shear viscosighould have the same sions, but the evidence of its algebraic form was rather
algebraic form as in the case of the velocity autocorrelatiorequivocal[15—17. Only recently with the method of diffu-
function[5]. It should be noted, however, that kinetic theory sive wave spectroscopy has it been possible to measure with
only predicts this algebraic decay for the kinetic part of thesufficient accuracy the decay of the velocity autocorrelation
stress correlation function, whereas the interaction part is fafunction of a colloidal particle on the fast-time scale of mo-
more important at liquidlike densities. The long-time behav-mentum relaxation and confirmed unequivocally its algebraic
ior of the the stress autocorrelation function has been comform t~%2 [18]. This “short-time” dynamics is an area of
puted by MD many timege.g.,[6—8]). These studies showed extensive theoreticdll9] and numerical investigatiof20].
that the long-time decay of both the kinedad interaction On the time scale of the particle position relaxation, how-
parts appeared to have an algebraic decay consistent wietver, the investigations of the long-time form of the transport
MCT and kinetic theories, although the amplitude of the totalcorrelation functions are less well developed for colloidal
correlation function was found to be orders of magnitudethan for simple liquids. The microscopic dynamics of colloi-
greater than predicted by these theories. The viscosity beingal or Brownian particles is driven by the Langevin equa-
a collective quantity is less tractable than self-diffusion andions, which are substantially different from the Newtonian
the evidence for algebraic decay itself at liquid densities haparticle dynamics that are used in MR1]. Theoretical in-
now been questione®-12]. vestigations(based on the weak-coupling and mode-mode-
Despite many years of study the issue of the slow decagoupling approximationsof strongly overdamped Brownian
of the transport time correlation functions is far from being particle fluids without hydrodynamic interactions predict a
solved satisfactorily. An outstanding problem, caused by thé 2 decay of the time-dependent self-diffusion coefficient
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and assert that the shear stress relaxation fungth po-

tential par} decays asymptotically with time as "2 [22].

This form of decay is considered to be univer&ad., does 2 3

not depend on the thermodynamic state and interparticle in- ] B 8‘8

teraction. This result has been used as the main assumption ] oy T )

in various phenomenological descriptions of the dynamic 1.0 ]

viscosity of model colloidal suspensiof@3—25. ]
To date there have been very few accurate calculations

dealing with the long-time behavior of the stress correlation

functions in the model colloidal liquids or liquids of interact- 0.0 o

ing Brownian particles. One reason for this is that such stud-

ies require extremely long trajectories for relatively large

systems, which make the calculations hardly tractable. FIG. 1. Radial distribution functions of the 2D Yukawa fluid at
We present results of extensive Brownian dynani@B)  three different densities studied in the work b+ 3.

simulations of the model 2D colloidal suspension. The main

aim is to investigate the long-time behavior of the shearintegral of this function is important as, through the Green-

stress autocorrelation function of an interacting Browniankubo expression, it gives the shear viscosity

particle liquid.

glr)]
2.0 ]

V ©
II. MODEL AND SIMULATION METHOD 7]S=ﬁ f Cq(t)dt. (4)
B 0
We consider a system oN interacting particles sus-
pended in an incompressible fluid of viscosify. The in- | oyr calculations the screening parameter was$ and the
teraction between two particles is modeled by a Yukawa paifyieraction was truncated far>2.5 because of the rapidly
potential of the form decaying nature of the pair potential. As the potential is
u(r)=Uy exd -\ (r = D)]/r, 2 strongly repulsive a sufficiently small time step had to be

used[A problem with the algorithm in Eq2) and in general
with BD simulations is that, unlike the MD algorithm, there

: ; . is no conserved quantity that can be used to check the sta-
energy scale, and is the screening parameter charactenzmgRility of the time-gteppiné] algorithrh The procedure to de-

the steepness and range of the potential. The Yukawa pote . . -
termine an optimum value dft was to perform preliminary

tial, being the electrostatic part of the Derjaguin-Landau-

Verwey-Overbeek potential, is considered to give a good decalculations with different values aft and then to choose

scription of the interaction of a dilute charge-stabilized one su_ch_th_at, fpr shorter-time_s_teps, aII_ properties are statis-
colloidal suspensiong22] tically indistinguishable. In addition to this we also have car-

The time evolution of the Brownian particles is deter- ried out canonical MD and Monte Car{MC) simulations to

mined by the position Langevin equations. When many-bod stablish the correct structural and thermodynamic values for

hydrodynamic interactions are neglected the position update'c systenfstatic properties of a given system calculated by
al);;orithym for the particles 626 zﬂg P P MC, MD, and BD methods have to be the sanEhe actual

BD time step was optimized on the basis of these data and its
value in the simulations wast=2x10"°,

wherer is the distance between the particlék, sets the

D
(A =1,(1) + —= FAt+dr,;. ?)
KeT

. . ) . IIl. RESULTS AND DISCUSSION
& is the random displacement sampled from a Gaussian dis-

tribution of zero mean and variangesr?)=2DyAt. D, Simulations have been performed at nine state points
=kgT/3man, is the self-diffusion coefficient at infinite di- (€,T) comprising three densities and three temperatures,
lution. It was set to unity as the calculated quantities aravhich are representive of dilute, intermediate, and dense
independent of its valug; is the net force, derived from the fluid states. The radial pair correlation functiay(@), shown

potential in Eq.(1) acting on particlei. All quantities re- in Fig. 1 for one temperature, confirm th.e presence of these
ported here are in dimensionless units, usingr?/D,, and  three regions. In our calculations four different sizes of the

Ug/o as the characteristic values for length, time, andsystem were usedd=289,625,1600,3600. The statistical er-
forces, respectivelyo is a measure of the particle diameter. for of the calculated data, at each state point, was estimated
Energy is inU,, temperature is irUy/ks, andkg is the Dy calculating the mean-square deviation of the averages

Boltzmann constant. from n equal subrungthe number of subruns in the simula-
Our primary aim is to calculate the stress autocorrelatiortion varied from 6 to 10 depending on the total simulation
function time).
The resulting normalized shear-stress autocorrelation
Cq(t)=(AP(1)AP(0)), (3)  functions (SSAFg are slightly density- and temperature-

dependent monotonically decaying functions. An example of
where AP in two dimensions can represent eithieg, or  the function is shown in Fig. 2. The inset clearly shows that
(Pxx—Pyy)/2, in our simulations both forms have been cal-for t>0.3 the function is statistical zero with fluctuation am-
culated and used to reduce the statistical noise. The timplitudes less than 0.005. The contribution of this region to
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FIG. 2. Normalized shear-stress autocorrelation function for a
2D Yukawa fluid ate=0.3 andT=3 using N=1600 andt,. Ms E
=1600. The inset magnifies the long-time region. The dashed lines 9-090 3
represent the bounds of the uncertainty of the simulation @atal 3

0.095 1

line). 0.085 7
the integral(4), at all state points studied, is negligitless 0.080 1
than 0.2%. E
The long-time region of the time correlation functionis an ~ -97° 3
especially sensitive region of the numerical computation and
is subject to a number of possible sources of uncertainty that -7 JEPRRRRS S0 1200 1600
have to be assessed. We have made a careful study of an ) toor

N=625 system using different computeiGray J916, SGI

Power Challenge, IBM SP2, Hewlett-Packard workstations  F|G. 3. (a) Deviations of the SSAF from its final form in Fig. 2
to confirm that the influences of the random number generaas a function of accumulated simulation timg. (b) Integral from
tor and the finite number of digits in the floating point num- Eq. (4) after various lengths of simulatioiy,, have been accumu-
ber are negligible. Similarly, we showed that the use of dif-lated.

ferent time stepat/2 andAt/4 and several potential cutoffs

r.=2.8,3.0 did not change our results. assume that data for the large system should be sufficiently

An important source of uncertainty is the number of time ..y rate to make some reliable statements about the possible
steps or the total time length of the simulatiGg,. As one  anaytical form of the SSAF decay. A stringent test for the
can see in Fig. 3, the time convergence of the SSAF 10 thf,ggjple analytic form of thes(t) decay is to plot the
form presented in Fig. 2 is rather sluggish. A simulation forCS(t) in a logarithmic form. For an exponential decay
as long as,—=1000 is necessary to obtain reliable informa- exp(—t/7), for example, we have that[84t)] is linear with
tion about the SSAF at~0.2 and a stable value of its inte- 1 For a stretched exponentialC(t)

gral (and hence shear viscosityThis time is almost two slope —r .
=G., exp(—t/x)?, In{—In[C41)]} has a slope of and an
orders of magnitude longer than usually one needs in B Xp(Ux) {=In[CLO]} pe ofs

I?ntercept of —BIn(x). An algebraic decayCq(t)=At"¢
calculationg(e.qg., for thermodynamic quantities and the self- ) S .
diffusion coefficient. A further extension of the simulation when plotted as [€4(0)] vs In(), has a slope of-a. There

. c X . fore, a graphical presentation of these computed functions
time does not lead to any significant reduction of the statis- grap P P

tical noise for times longer than 0.25. Consequently, the data

presented in the figures are shown only upt4e0.25 [or -2.0 q
In(t)=—1.4]. 1

The size of the system does influence the SSAF, but
seems to be less critical thap,y. In Fig. 4 the SSAF at -3.0 ]

0=0.6, T=3 is shown on a log-log scale. The number de-
pendence of the SSAF is clearly visible fortla(—2.6. The ]
general trend seems to be independent of system size, al- —4.0 ]

In(C"(t))

though all the data taken from the small systés289 ] asasan = ez

differ in a quite systematic way from the data of the large ] @XON = 3600

systemdN= 1600 and 3600. The SSAFs of the large systems 5.0 1o ] B - S
are mutually consistent. From Fig. 4 it is also clear that the -3.0 -2.5 -2.0 -1.5
sizeN=625 may not be sufficient to obtain quantitative in- In(t)

formation about the long-time behavior of the SSAF. The

data obtained from the calculations are summarized in Table FIG. 4. Normalized shear-stress autocorrelation function in 2D

l. Yukawa fluid ato=0.3 andT =3 for different system sizes plotted
On the basis of the above analyses it is reasonable t@ a log-log representation.
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TABLE I. Shear moduluss,. and the Green-Kubo shear viscositigsfor 2D Yukawa fluids at different
reduced densitieg and temperatureE. N denotes the number of particlés,, the maximum length of time
in the trajectory,U the energy per particle, andél the pressurep and « are the stretched exponential
parameters determined from a least-squares fit. The last row includes data taken from a simulation carried out
with an inverse power ~*2 fluid.

Q T N tax G.. s U P B K

0.3 4 289 1600 0.936) 0.01968) 0.524 0.659 0.529 0.0123
0.3 3 289 1600 0.799) 0.018Q7) 0.419 0.542 0.538 0.0129
0.3 3 625 1600 0.809) 0.01838) 0.422 0.545 0.559 0.0138
0.3 3 1600 1600 0.8@3) 0.01868) 0.421 0.544 0.553 0.0136
0.3 2 289 3200 0.643) 0.01486) 0.306 0.411 0.542 0.0136
0.3 2 625 1600 0.644) 0.01517) 0.307 0.413 0.542 0.0140
0.6 4 289 6400 5.23) 0.0962) 1.541 3.801 0.591 0.0121
0.6 3 289 6400 4.63) 0.0863) 1.280 3.243 0.599 0.0126
0.6 3 625 3200 4.63) 0.0883) 1.282 3.247 0.597 0.0127
0.6 3 1600 1600 4.83) 0.09Q3) 1.283 3.249 0.593 0.0129
0.6 3 3600 1600 4.63) 0.0903) 1.283 3.249 0.594 0.0128
0.6 2 289 6400 3.92) 0.08G2) 0.991 2.604 0.585 0.0131
0.9 4 289 6400 16.68) 0.27898) 3.548 12.745 0.668 0.0135
0.9 3 289 6400 15.29) 0.2746) 3.081 11.322 0.618 0.0125
0.9 3 625 1600 15.38) 0.2767) 3.083 11.329 0.621 0.0126
0.9 3 1600 1600 15.48) 0.28Q7) 3.086 11.338 0.632 0.0128
0.9 3 289 6400 13.6%) 0.2735) 2.557 9.961 0.636 0.0136
0.6 3 625 3200 16.38) 0.1856) 0.750 4.047 0.412 0.0035

should indicate clearly which of the analytic forrfif any) “stretched” exponents for different densitiésee Table)l
the data conform to. We have found additional indications of this lack of uni-

In Fig. 5 we show a IFC4t)] vs In(t) plot for the long-  versality of the stretched exponent by performing BD calcu-
time region at three densities. If the correlation functionslations with a model colloidal inverse power fluid. As one
were power-law analytic we would expect a linear curve. Incan see in Fig. Tand also in the data given in Tablg the
fact, there is a continuous decrease in slope with increasin§SAF of ther ~ 8 fluid follows a straight line whose slope is
time. The best least-squares fit is provided by the third-ordeclearly different from that of the Yukawa fluid. Therefore, to
polynomial and at no point can a straight line justifiably besummarize, our studies give strong evidence that the decay
ascribed to the data points. Instead, the linear regressian Cg(t) for t>0.05[or In(t)<—3] is very well represented
shown in Fig. 6 represents well the data points if they areéby a stretched exponential.
plotted as I—In[Cgt)]} vs In(). It is important to note that
despite apparent similarities of the sloggs of the curves V. CONCLUSION

there is a detectable difference in the least-squares ) ) )
In this work the long-time behavior of the shear stress
autocorrelation function in a model 2D colloidal fluid has

been investigated. A fluid of repulsive Yukawa particles was

-3.0 ]
] 2.0 7
] eseess (0.3

apooo 0.6
ass8s8 0.9

In(C’,(t))

-5.0 E 1.5 5
] esesee (.3 ]
ooooo (0.6
aaaaan (0.9

In(=In(C",(t)))

—-7.0 e N e - 1.0 ] e
-3.0 -2.5 -2.0 -1.5
In(t)
. . . ) 0.5 TrTrrTrTrTTTT Ty v TTTTTT Ty T T T
FIG. 5. Shear-stress autocorrelation function in the long-time -3.0 -25 -20 -15
region represented in logarithmic form at different densitiesNor In{t)

=1600. The bounds of the uncertainty in he0.6 data are shown
as dashed lines. The continuous lines are third-order polynomial FIG. 6. Same data as in Fig. 5, but plotted as-lim[C4(t)]} vs
least-squares fits to the data points. In(t).
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decay of the SSAF. On the basis of the performed analysis
we can conclude that in the range of times and system sizes
accessible to our BD simulations the form most consistent
with the simulation data of the stress autocorrelation func-
tions is not a power law but a stretched exponential. The lack
of a universal value of the streched exponent can be viewed

In(-In(C’,(t)))

1.0 ] p=0.6 T=3 as an additional argument supporting this conclusion. If the
i ' exponents were the same it might suggest that at much
] D awa) longer times than could be considered here, the functions
05 Torrreees I B would converge to a common form more in line with alge-
-3.0 -25 -20 -15 braic decay.
In(t) Molecular-dynamics simulations carried out by Ladd, Al-

ley, and Alder[11] also gave strong evidence for nonalge-
FIG. 7. Same quantities as for Fig. 6, except that the long-timedraic decay in time of the shear-stress autocorrelation func-
region for the Yukawa and inverse power fluids are compared. tion for dense hard-sphere fluidstretched exponential in
three dimensions, but exponential in two dimensjoi$e
studied at several different state points using aaL.'thorS suggest that the reason for nonalgebraic de_ca_y Is t.hat
hydrodynamics-free BD technique. We found that in order tothIS re.laxatlor) is structural rather than hydro_dynamlc I ori-
study the long-time behavior of the SSAF relatively Iargeg'n' It is possible that the same mechanism, i.e., a slow struc-

systems were necessafgystems ofN>600 particles are tural_ relaxation, is responsible alsc_J for the stretched expo-
required in the dense fluid regipre stress, however, that nential decay of the SSAF in Brownian fluids, although more

the statistical error depends mainly on the number of integraWork to confirm this is required.

tion steps and trajectories for as longtas1000 should be

used to get reliable information_ about the functional form of ACKNOWLEDGMENTS
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