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Long-time behavior of the shear-stress autocorrelation function
in two-dimensional colloidal fluids
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Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 60-179 Poznan´, Poland

D. M. Heyes
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~Received 2 December 1996!

Brownian dynamics simulations of two-dimensional Yukawa particles have been performed over a range of
fluid densities in order to study the long-time behavior of the stress autocorrelation function in simple models
for colloidal liquids. The system size and the trajectory length dependence of the shear stress autocorrelation
function have been investigated in detail for simulation trajectories of length in excess of 1600s2/D0 . The
results indicate that the decay of the shear-stress autocorrelation function has a fractional exponential form and
is not algebraic in time, certainly up to times;s2/D0 at which time the correlation function has decayed
statistically to zero.@S1063-651X~97!02605-6#

PACS number~s!: 82.70.Dd, 61.20.Lc, 66.20.1d
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I. INTRODUCTION

Green-Kubo theory has been widely used to comp
transport coefficients in computer simulations. The integra
in the Green-Kubo formula is a time correlation functio
whose long-time decay is generally held to be nonexpon
tial. This behavior was initially observed by molecula
dynamics MD simulation studies of the velocity autocorre
tion function of hard-sphere and disk fluids@1#. These
simulations revealed that the velocity autocorrelation fu
tion decays algebraically ast2d/2, whered is the dimension-
ality of the system. More extensive simulations of hard-c
and other molecular fluids confirmed the existence of t
so-called long-time tail behavior@2#.

This algebraic decay has also been predicted by kin
@3# and hydrodynamic mode-coupling theory~MCT! @4#. The
velocity autocorrelation function determines self-diffusi
~the simplest transport coefficient! and is a one-particle quan
tity. Mode-coupling and kinetic theories lead one to exp
that the decay of the shear-stress autocorrelation func
~which determines the shear viscosity! should have the sam
algebraic form as in the case of the velocity autocorrelat
function @5#. It should be noted, however, that kinetic theo
only predicts this algebraic decay for the kinetic part of t
stress correlation function, whereas the interaction part is
more important at liquidlike densities. The long-time beha
ior of the the stress autocorrelation function has been c
puted by MD many times~e.g.,@6–8#!. These studies showe
that the long-time decay of both the kineticand interaction
parts appeared to have an algebraic decay consistent
MCT and kinetic theories, although the amplitude of the to
correlation function was found to be orders of magnitu
greater than predicted by these theories. The viscosity b
a collective quantity is less tractable than self-diffusion a
the evidence for algebraic decay itself at liquid densities
now been questioned@9–12#.

Despite many years of study the issue of the slow de
of the transport time correlation functions is far from bei
solved satisfactorily. An outstanding problem, caused by
551063-651X/97/55~5!/5713~5!/$10.00
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long-time tails, is the divergence of two-dimensional tran
port coefficients. Very recently, this problem has been re
vestigated independently by Hoover and Posch@13# and
Gravina, Ciccotti and Holian@14#. Their extensive equilib-
rium and nonequilibrium MD calculations of the shear pro
lem in two-dimensional~2D! simple fluids have shown no
evidence for a divergence of the shear viscosity with sys
size and cast doubt on the generality of the divergence a
ment. The results strongly suggest that viscosity is a me
ingful material property in two dimensions. The autho
point out the relative importance of fluctuations and surfa
effects in two dimensions, which both contribute terms
orderN21/2 to N-body intensive terms. This fact is not buil
into the expressions for the transport coefficients, wh
could be the reason of the long-standing view that 2D tra
port coefficients diverge.

There is also evidence of a slow decay in the time cor
lation functions of colloidal suspensions. Experiments c
ried out on colloidal liquids confirmed the slow decay of t
velocity autocorrelation function in 3D colloidal suspe
sions, but the evidence of its algebraic form was rat
equivocal@15–17#. Only recently with the method of diffu-
sive wave spectroscopy has it been possible to measure
sufficient accuracy the decay of the velocity autocorrelat
function of a colloidal particle on the fast-time scale of m
mentum relaxation and confirmed unequivocally its algebr
form t23/2 @18#. This ‘‘short-time’’ dynamics is an area o
extensive theoretical@19# and numerical investigation@20#.

On the time scale of the particle position relaxation, ho
ever, the investigations of the long-time form of the transp
correlation functions are less well developed for colloid
than for simple liquids. The microscopic dynamics of collo
dal or Brownian particles is driven by the Langevin equ
tions, which are substantially different from the Newtoni
particle dynamics that are used in MD@21#. Theoretical in-
vestigations~based on the weak-coupling and mode-mod
coupling approximations! of strongly overdamped Brownian
particle fluids without hydrodynamic interactions predict
t23/2 decay of the time-dependent self-diffusion coefficie
5713 © 1997 The American Physical Society
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5714 55A. C. BRAŃKA AND D. M. HEYES
and assert that the shear stress relaxation function~the po-
tential part! decays asymptotically with time ast27/2 @22#.
This form of decay is considered to be universal~i.e., does
not depend on the thermodynamic state and interparticle
teraction!. This result has been used as the main assump
in various phenomenological descriptions of the dynam
viscosity of model colloidal suspensions@23–25#.

To date there have been very few accurate calculat
dealing with the long-time behavior of the stress correlat
functions in the model colloidal liquids or liquids of interac
ing Brownian particles. One reason for this is that such st
ies require extremely long trajectories for relatively lar
systems, which make the calculations hardly tractable.

We present results of extensive Brownian dynamics~BD!
simulations of the model 2D colloidal suspension. The m
aim is to investigate the long-time behavior of the she
stress autocorrelation function of an interacting Brown
particle liquid.

II. MODEL AND SIMULATION METHOD

We consider a system ofN interacting particles sus
pended in an incompressible fluid of viscosityh0 . The in-
teraction between two particles is modeled by a Yukawa p
potential of the form

u~r !5U0 exp@2l~r21!#/r , ~1!

where r is the distance between the particles,U0 sets the
energy scale, andl is the screening parameter characteriz
the steepness and range of the potential. The Yukawa po
tial, being the electrostatic part of the Derjaguin-Landa
Verwey-Overbeek potential, is considered to give a good
scription of the interaction of a dilute charge-stabiliz
colloidal suspensions@22#.

The time evolution of the Brownian particles is dete
mined by the position Langevin equations. When many-bo
hydrodynamic interactions are neglected the position upd
algorithm for the particles is@26,27#

r i~ t1Dt !5r i~ t !1
D0

kBT
FiDt1dr i . ~2!

dr is the random displacement sampled from a Gaussian
tribution of zero mean and variancêdr2&52D0Dt. D0
5kBT/3psh0 is the self-diffusion coefficient at infinite di
lution. It was set to unity as the calculated quantities
independent of its value.Fi is the net force, derived from th
potential in Eq.~1! acting on particlei . All quantities re-
ported here are in dimensionless units, usings, s2/D0 , and
U0 /s as the characteristic values for length, time, a
forces, respectively~s is a measure of the particle diamete!
Energy is inU0 , temperature is inU0 /kB , and kB is the
Boltzmann constant.

Our primary aim is to calculate the stress autocorrelat
function

CS~ t !5^DP~ t !DP~0!&, ~3!

whereDP in two dimensions can represent eitherPxy or
(Pxx2Pyy)/2, in our simulations both forms have been c
culated and used to reduce the statistical noise. The
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integral of this function is important as, through the Gree
Kubo expression, it gives the shear viscosity

hS5
V

kBT
E
0

`

CS~ t !dt. ~4!

In our calculations the screening parameter wasl58 and the
interaction was truncated forr.2.5 because of the rapidly
decaying nature of the pair potential. As the potential
strongly repulsive a sufficiently small time step had to
used.@A problem with the algorithm in Eq.~2! and in general
with BD simulations is that, unlike the MD algorithm, ther
is no conserved quantity that can be used to check the
bility of the time-stepping algorithm.# The procedure to de
termine an optimum value ofDt was to perform preliminary
calculations with different values ofDt and then to choose
one such that, for shorter-time steps, all properties are st
tically indistinguishable. In addition to this we also have ca
ried out canonical MD and Monte Carlo~MC! simulations to
establish the correct structural and thermodynamic values
the system~static properties of a given system calculated
MC, MD, and BD methods have to be the same!. The actual
BD time step was optimized on the basis of these data an
value in the simulations wasDt5231025.

III. RESULTS AND DISCUSSION

Simulations have been performed at nine state po
(%,T) comprising three densities and three temperatu
which are representive of dilute, intermediate, and de
fluid states. The radial pair correlation functionsg(r ), shown
in Fig. 1 for one temperature, confirm the presence of th
three regions. In our calculations four different sizes of t
system were used:N5289,625,1600,3600. The statistical e
ror of the calculated data, at each state point, was estim
by calculating the mean-square deviation of the avera
from n equal subruns~the number of subruns in the simula
tion varied from 6 to 10 depending on the total simulati
time!.

The resulting normalized shear-stress autocorrela
functions ~SSAFs! are slightly density- and temperature
dependent monotonically decaying functions. An example
the function is shown in Fig. 2. The inset clearly shows th
for t.0.3 the function is statistical zero with fluctuation am
plitudes less than 0.005. The contribution of this region

FIG. 1. Radial distribution functions of the 2D Yukawa fluid
three different densities studied in the work forT53.
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55 5715LONG-TIME BEHAVIOR OF THE SHEAR-STRESS . . .
the integral~4!, at all state points studied, is negligible~less
than 0.2%!.

The long-time region of the time correlation function is
especially sensitive region of the numerical computation
is subject to a number of possible sources of uncertainty
have to be assessed. We have made a careful study o
N5625 system using different computers~Cray J916, SGI
Power Challenge, IBM SP2, Hewlett-Packard workstatio!
to confirm that the influences of the random number gen
tor and the finite number of digits in the floating point num
ber are negligible. Similarly, we showed that the use of d
ferent time stepsDt/2 andDt/4 and several potential cutoff
r c52.8,3.0 did not change our results.

An important source of uncertainty is the number of tim
steps or the total time length of the simulationtmax. As one
can see in Fig. 3, the time convergence of the SSAF to
form presented in Fig. 2 is rather sluggish. A simulation
as long astmax51000 is necessary to obtain reliable inform
tion about the SSAF att'0.2 and a stable value of its inte
gral ~and hence shear viscosity!. This time is almost two
orders of magnitude longer than usually one needs in
calculations~e.g., for thermodynamic quantities and the se
diffusion coefficient!. A further extension of the simulation
time does not lead to any significant reduction of the sta
tical noise for times longer than 0.25. Consequently, the d
presented in the figures are shown only up tot'0.25 @or
ln(t)521.4#.

The size of the system does influence the SSAF,
seems to be less critical thantmax. In Fig. 4 the SSAF at
%50.6, T53 is shown on a log-log scale. The number d
pendence of the SSAF is clearly visible for ln(t),22.6. The
general trend seems to be independent of system size
though all the data taken from the small systemN5289
differ in a quite systematic way from the data of the lar
systemsN51600 and 3600. The SSAFs of the large syste
are mutually consistent. From Fig. 4 it is also clear that
sizeN5625 may not be sufficient to obtain quantitative i
formation about the long-time behavior of the SSAF. T
data obtained from the calculations are summarized in Ta
I.

On the basis of the above analyses it is reasonabl

FIG. 2. Normalized shear-stress autocorrelation function fo
2D Yukawa fluid at%50.3 andT53 using N51600 andtmax
51600. The inset magnifies the long-time region. The dashed l
represent the bounds of the uncertainty of the simulation data~solid
line!.
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assume that data for the large system should be sufficie
accurate to make some reliable statements about the pos
analytical form of the SSAF decay. A stringent test for t
possible analytic form of theCS(t) decay is to plot the
CS(t) in a logarithmic form. For an exponential deca
exp(2t/t), for example, we have that ln@CS(t)# is linear with
slope 2t21. For a stretched exponentialCS(t)
5G` exp(2t/k)b, ln$2ln@CS(t)#% has a slope ofb and an
intercept of 2b ln~k!. An algebraic decayCS(t)5At2a,
when plotted as ln@CS(t)# vs ln(t), has a slope of2a. There-
fore, a graphical presentation of these computed functi

a

es

FIG. 3. ~a! Deviations of the SSAF from its final form in Fig. 2
as a function of accumulated simulation timet tot . ~b! Integral from
Eq. ~4! after various lengths of simulationt tot have been accumu
lated.

FIG. 4. Normalized shear-stress autocorrelation function in
Yukawa fluid at%50.3 andT53 for different system sizes plotte
in a log-log representation.
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TABLE I. Shear modulusG` and the Green-Kubo shear viscositieshS for 2D Yukawa fluids at different
reduced densities% and temperaturesT. N denotes the number of particles,tmax the maximum length of time
in the trajectory,U the energy per particle, andP the pressure.b and k are the stretched exponentia
parameters determined from a least-squares fit. The last row includes data taken from a simulation ca
with an inverse powerr218 fluid.

% T N tmax G` hS U P b k

0.3 4 289 1600 0.931~6! 0.0196~8! 0.524 0.659 0.529 0.0123
0.3 3 289 1600 0.799~4! 0.0180~7! 0.419 0.542 0.538 0.0129
0.3 3 625 1600 0.809~2! 0.0183~8! 0.422 0.545 0.559 0.0138
0.3 3 1600 1600 0.805~2! 0.0186~8! 0.421 0.544 0.553 0.0136
0.3 2 289 3200 0.643~3! 0.0148~6! 0.306 0.411 0.542 0.0136
0.3 2 625 1600 0.644~4! 0.0151~7! 0.307 0.413 0.542 0.0140

0.6 4 289 6400 5.22~3! 0.096~2! 1.541 3.801 0.591 0.0121
0.6 3 289 6400 4.62~3! 0.086~3! 1.280 3.243 0.599 0.0126
0.6 3 625 3200 4.62~5! 0.088~3! 1.282 3.247 0.597 0.0127
0.6 3 1600 1600 4.63~3! 0.090~3! 1.283 3.249 0.593 0.0129
0.6 3 3600 1600 4.63~3! 0.090~3! 1.283 3.249 0.594 0.0128
0.6 2 289 6400 3.92~2! 0.080~2! 0.991 2.604 0.585 0.0131

0.9 4 289 6400 16.66~4! 0.278~8! 3.548 12.745 0.668 0.0135
0.9 3 289 6400 15.29~7! 0.274~6! 3.081 11.322 0.618 0.0125
0.9 3 625 1600 15.33~8! 0.276~7! 3.083 11.329 0.621 0.0126
0.9 3 1600 1600 15.43~6! 0.280~7! 3.086 11.338 0.632 0.0128
0.9 3 289 6400 13.67~4! 0.272~5! 2.557 9.961 0.636 0.0136

0.6 3 625 3200 16.32~5! 0.185~6! 0.750 4.047 0.412 0.0035
n
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should indicate clearly which of the analytic forms~if any!
the data conform to.

In Fig. 5 we show a ln@CS(t)# vs ln(t) plot for the long-
time region at three densities. If the correlation functio
were power-law analytic we would expect a linear curve.
fact, there is a continuous decrease in slope with increa
time. The best least-squares fit is provided by the third-or
polynomial and at no point can a straight line justifiably
ascribed to the data points. Instead, the linear regres
shown in Fig. 6 represents well the data points if they
plotted as ln$2ln@CS(t)#% vs ln(t). It is important to note that
despite apparent similarities of the slopes~b! of the curves
there is a detectable difference in the least-squa

FIG. 5. Shear-stress autocorrelation function in the long-ti
region represented in logarithmic form at different densities forN
51600. The bounds of the uncertainty in the%50.6 data are shown
as dashed lines. The continuous lines are third-order polyno
least-squares fits to the data points.
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‘‘stretched’’ exponents for different densities~see Table I!.
We have found additional indications of this lack of un

versality of the stretched exponent by performing BD calc
lations with a model colloidal inverse power fluid. As on
can see in Fig. 7~and also in the data given in Table I!, the
SSAF of ther218 fluid follows a straight line whose slope i
clearly different from that of the Yukawa fluid. Therefore,
summarize, our studies give strong evidence that the de
in CS(t) for t.0.05 @or ln(t),23# is very well represented
by a stretched exponential.

IV. CONCLUSION

In this work the long-time behavior of the shear stre
autocorrelation function in a model 2D colloidal fluid ha
been investigated. A fluid of repulsive Yukawa particles w

e

al FIG. 6. Same data as in Fig. 5, but plotted as ln$2ln@CS(t)#} vs
ln(t).
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55 5717LONG-TIME BEHAVIOR OF THE SHEAR-STRESS . . .
studied at several different state points using
hydrodynamics-free BD technique. We found that in orde
study the long-time behavior of the SSAF relatively lar
systems were necessary~systems ofN.600 particles are
required in the dense fluid region!. We stress, however, tha
the statistical error depends mainly on the number of integ
tion steps and trajectories for as long ast51000 should be
used to get reliable information about the functional form
these functions. These conclusions are the same as have
found for the MD simulation of model simple fluid transpo
coefficients@28#.

Using theN51600 systems and very long simulations,
attempt was made to establish the functional form of the t

FIG. 7. Same quantities as for Fig. 6, except that the long-t
region for the Yukawa and inverse power fluids are compared.
ys
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decay of the SSAF. On the basis of the performed anal
we can conclude that in the range of times and system s
accessible to our BD simulations the form most consist
with the simulation data of the stress autocorrelation fu
tions is not a power law but a stretched exponential. The l
of a universal value of the streched exponent can be vie
as an additional argument supporting this conclusion. If
exponents were the same it might suggest that at m
longer times than could be considered here, the functi
would converge to a common form more in line with alg
braic decay.

Molecular-dynamics simulations carried out by Ladd, A
ley, and Alder@11# also gave strong evidence for nonalg
braic decay in time of the shear-stress autocorrelation fu
tion for dense hard-sphere fluids~stretched exponential in
three dimensions, but exponential in two dimensions!. The
authors suggest that the reason for nonalgebraic decay is
this relaxation is structural rather than hydrodynamic in o
gin. It is possible that the same mechanism, i.e., a slow st
tural relaxation, is responsible also for the stretched ex
nential decay of the SSAF in Brownian fluids, although mo
work to confirm this is required.
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